If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-15t-35=0
a = 4.9; b = -15; c = -35;
Δ = b2-4ac
Δ = -152-4·4.9·(-35)
Δ = 911
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{911}}{2*4.9}=\frac{15-\sqrt{911}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{911}}{2*4.9}=\frac{15+\sqrt{911}}{9.8} $
| 3x-4+2x=9x+16 | | 1/3x-4=-3/4x+1 | | 9+3x-4/3=11/3 | | -9x-4=-4x+21 | | X2=5x+14 | | 3x4=36 | | 5x+10=8+3 | | 118=4x+38 | | 180=48-2x/2 | | 5x2+15x+6=0 | | (7/10x+1x)=630 | | (7/10x+1(0))=630 | | 630=(7/10x+1(0)) | | -1.5=-0.2x | | x+6/14=3/7+x-5/5 | | a-30=30 | | y+179=179 | | 55+y=60 | | 5y-7=8+4(y-2) | | 30+c=70 | | 5(x/15-16)=-30=-1/3x | | 26x+24/x=-60 | | X-8+2x=7 | | 5-n=2n-8 | | 2x+666=77778 | | 9(x-3)=2x+8 | | -16+7d-4=6(d-5)-9 | | 4/3c+8=0 | | 1/3x-5=81^x | | 100x-73=27x | | 2(1-t)^2-5(1-t)+1=0 | | (X+y)22=42 |